Install the GCC compiler
1
|
sudo apt install gcc --fix-missing
|
1
|
sudo apt install nvidia-cuda-toolkit
|
check the Driver and CUDA versions
Install Python with Mamba
1
2
|
wget https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-Linux-x86_64.sh
bash Miniforge3-Linux-x86_64.sh
|
1
2
3
|
mamba create -n mycuda jupyterlab -c conda-forge
mamba activate mycuda
jupyter lab
|
Testing Cuda
Search nvidia control panel, and select “Allow access to GPU performance counters to all users”
1
|
pip install torch numpy
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
|
import time
matrix_size = 32*128
x= torch.randn(matrix_size, matrix_size)
y= torch.randn(matrix_size,matrix_size)
print("***: CPU SPEED")
start = time.time()
result = torch.matmul(x,y)
print(time.time()- start)
print("verify device:",result.device)
x_gpu = x.to(device)
y_gpu =y.to(device)
torch.cuda.synchronize()
for i in range(1):
print("---GPU SPEED---")
start = time.time()
result_gpu = torch.matmul(x_gpu, y_gpu)
torch.cuda.synchronize()
print(time.time()- start)
print("verify device:",result_gpu.device)
|
output:
1
2
3
4
5
6
|
***: CPU SPEED
0.19979572296142578
verify device: cpu
---GPU SPEED---
0.02033543586730957
verify device: cuda:0
|